ajustador.optimize

ajustador.optimize.filtereddict(**kwargs)[source]
ajustador.optimize.exe_map(single=False, async=False)[source]
ajustador.optimize.iv_filename(injection_current)[source]
ajustador.optimize.iv_filename_to_current(ivfile)[source]
ajustador.optimize.execute(p)[source]
ajustador.optimize.load_simulation(ivfile, simtime, junction_potential, features)[source]
class ajustador.optimize.Simulation(dir, junction_potential=0, currents=None, simtime=None, baseline=None, morph_file=None, single=False, async=False, features=None, **params)[source]
execute_for(injection_currents, junction_potential, single, async)[source]
wait()[source]
class ajustador.optimize.SimulationResult(dirname, features)[source]
report()[source]
static find_global(param, p_file)[source]
wait()[source]
class ajustador.optimize.SimulationResults(dirname, features)[source]
load(last=None)[source]
ordered(measurement, *, fitness=<class 'ajustador.fitnesses.combined_fitness'>)[source]
class ajustador.optimize.Param(name, value)[source]
min = None
max = None
fixed = True
static make(args)[source]
valid(val)[source]
class ajustador.optimize.AjuParam(name, value, min=None, max=None)[source]
fixed = False
scaled
scale(val)[source]
unscale(val)[source]
valid(val)[source]
class ajustador.optimize.ParamSet(*params)[source]
scaled
scale(values)[source]
scale_dict(values)[source]
unscale(scaled_values)[source]
unscaled_dict(scaled_values)[source]
update(**kwargs)[source]
scaled_bounds
class ajustador.optimize.Fit(dirname, measurement, model, neuron_type, fitness_func, params, feature_list=None)[source]
fitness_max = 200
load(last=None)[source]
param_names()[source]
sim(scaled_params)[source]
sim_fitness(sim, full=False, max_fitness=None)[source]
name
fitness(scaled_params)[source]
fitness_full(scaled_params)[source]
fitness_multi(many_values)[source]
finished()[source]
param_values(*what)[source]
do_fit(count, params=None, sigma=1, popsize=8, seed=123)[source]