ajustador.optimize
-
ajustador.optimize.
filtereddict
(**kwargs)[source]
-
ajustador.optimize.
exe_map
(single=False, async=False)[source]
-
ajustador.optimize.
iv_filename
(injection_current)[source]
-
ajustador.optimize.
iv_filename_to_current
(ivfile)[source]
-
ajustador.optimize.
execute
(p)[source]
-
ajustador.optimize.
load_simulation
(ivfile, simtime, junction_potential, features)[source]
-
class
ajustador.optimize.
Simulation
(dir, junction_potential=0, currents=None, simtime=None, baseline=None, morph_file=None, single=False, async=False, features=None, **params)[source]
-
execute_for
(injection_currents, junction_potential, single, async)[source]
-
wait
()[source]
-
class
ajustador.optimize.
SimulationResult
(dirname, features)[source]
-
report
()[source]
-
static
find_global
(param, p_file)[source]
-
wait
()[source]
-
class
ajustador.optimize.
SimulationResults
(dirname, features)[source]
-
load
(last=None)[source]
-
ordered
(measurement, *, fitness=<class 'ajustador.fitnesses.combined_fitness'>)[source]
-
class
ajustador.optimize.
Param
(name, value)[source]
-
min
= None
-
max
= None
-
fixed
= True
-
static
make
(args)[source]
-
valid
(val)[source]
-
class
ajustador.optimize.
AjuParam
(name, value, min=None, max=None)[source]
-
fixed
= False
-
scaled
-
scale
(val)[source]
-
unscale
(val)[source]
-
valid
(val)[source]
-
class
ajustador.optimize.
ParamSet
(*params)[source]
-
scaled
-
scale
(values)[source]
-
scale_dict
(values)[source]
-
unscale
(scaled_values)[source]
-
unscaled_dict
(scaled_values)[source]
-
update
(**kwargs)[source]
-
scaled_bounds
-
class
ajustador.optimize.
Fit
(dirname, measurement, model, neuron_type, fitness_func, params, feature_list=None)[source]
-
fitness_max
= 200
-
load
(last=None)[source]
-
param_names
()[source]
-
sim
(scaled_params)[source]
-
sim_fitness
(sim, full=False, max_fitness=None)[source]
-
name
-
fitness
(scaled_params)[source]
-
fitness_full
(scaled_params)[source]
-
fitness_multi
(many_values)[source]
-
finished
()[source]
-
param_values
(*what)[source]
-
do_fit
(count, params=None, sigma=1, popsize=8, seed=123)[source]